

An Australian Government Initiativ

Diabetes Update – Same diagnosis, different decisions: personalised diabetes care across age, ethnicity and risk

Thursday 20th November 2025

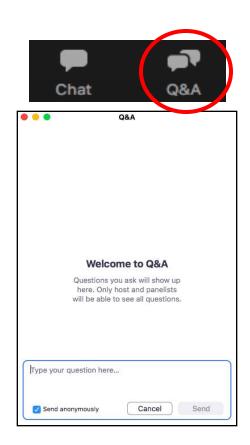
The content in this session is valid at date of presentation

Acknowledgement of Country

North Western Melbourne Primary
Health Network and Western Health would like
to acknowledge the Traditional Custodians of
the land on which our work takes place, The
Wurundjeri Woi Wurrung People, The Boon
Wurrung People and The Wathaurong People.

We pay respects to Elders past, present and emerging as well as pay respects to any Aboriginal and Torres Strait Islander people in the session with us today.

Housekeeping – Zoom Webinar

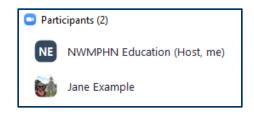

All attendees are muted

Please ask questions via the Q&A box only

Q&A will be at the end of the presentation

This session is being recorded, you will receive a link to this recording and copy of slides in post session correspondence.

Questions will be asked anonymously to protect your privacy



Housekeeping – Zoom Webinar

Please ensure you have joined the session using the same name as your event registration (or phone number, if you have dialled in)

NWMPHN uses Zoom's participant list to mark attendance and certificates and CPD will not be issued if we cannot confirm your attendance.

If you are not sure if your name matches, please send a Chat message to 'NWMPHN Education' to identify yourself.

Diabetes Update – Same diagnosis, different decisions: personalised diabetes care across age, ethnicity and risk

20 November 2025

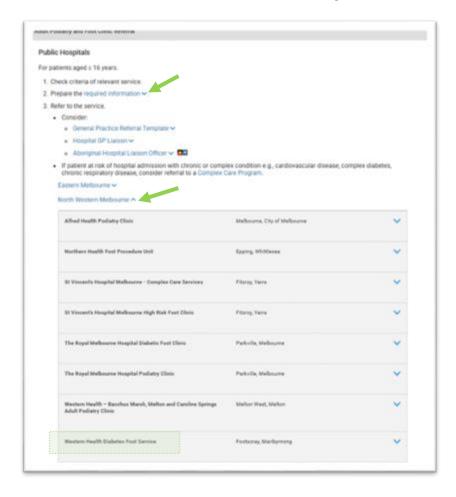
Pathways are written by GP clinical editors with support from local GPs, hospital-based specialists and other subject matter experts

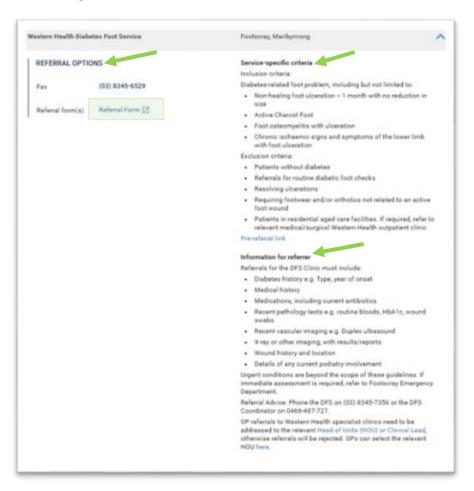
- clear and concise, evidencebased medical advice
- Reduce variation in care
- how to refer to the most appropriate hospital, community health service or allied health provider.
- what services are available to my patients

HealthPathways – Diabetes-related Foot Disease and Screening

HealthPathways - Diabetes-related Foot Disease and Screening

pracetes-related root processe and screening Assessment 1. Offer annual foot screening: . to all adults with diabetes, from diagnosis. . to children with diabetes, usually from 10 years after diagnosis. 2. Take a history w. Click on the drop-down arrow to view 3. Examine the patient: supplementary information Perform a visual inspection of the fact A Visual inspection of the foot Look for · current foot wounds and/or infection. · nail condition and any impingement on adjacent toes. · interdigital problems. . skin changes e.g., dry fissured skin, skin atrophy, callus formation. · Check naits for infection. . Ulcers can be masked by deep com or callus. · structural changes e.g., high arch, clawed toes, bunions · foot swelling. Check skin temperature v - warm, normal, or cold. Check for foot sensation using 10 g monofilament. Check vibration with tuning fork. Check tendon reflexes - arkie, and if absent, check knee reflexes. Perform perpheral arterial disease examination v to check for ischaemia. . Look for signs of foot care emergencies or red flags w, including: Uncers or wounds exposing tendon, bone, or joints - consider upoer swalp for microscopy, culture, and sensitivities (MCS). Severe, spreading, systemic, or limb-divisatening infection v. Osteomyeitis ♥. Oritical ischaemia V. . Active (acute) Charcet foot . Look for signs of active foot disease ♥. 4. If no active foot disease, stratify risk. Note that Aboriginal and Torres Strait Islander people should be considered high risk until High risk ♥ Moderate risk ❤


HealthPathways - Diabetes-related Foot Disease and Screening


pradetes resided hoot processe and screening Management Diabetic foot ofceration is serious and is best managed by a multidisciplinary foot care team. T. Arrange immediate emergency assessment if: · acute or critical limb inchaemia. · ostromyeltis. Infected foot ulcer and systemically unwell or febrie. · severe infection with associated systemic features, or . invasive infection or rapidly spreading cellulitis (i.e., perlpheral redness around the wound > 2 cm). 2. Manage any active foot disease A. If suspected acute Charcot foot, arrange immediate immobilisation, via the emergency department if necessary. Active foot disease foot uicer or pressure injury with mild to moderate infection (+ 2 cm erythema) and treat with ambiotics V. · necrosis or dry gangrene (with or without ulceration). suspected acute Charcot foot, and arrange immediate immobilisation, via the emergency department if necessary. If unable to access immobilisation, advise strict officeding v until immobilisation is available. · lower limb ischaemia with foot ulceration. . chronic non-healing foot wound (+ 1 month with no reduction in size) · Apply appropriate dressings and closely monitor all wounds and ulcers. If no red flags v or active foot disease, manage based on risk. · Highrisk v · Moderate risk v. · Low risk ~ 4. Manage specific complications: · Paintul diabetic neuropaths v . Peripheral arterial disease - follow the Peripheral Vascular Disease pathway. Give tetanus vaccination ➤ if indicated. 6. Ensure elderly or visually impaired patients, or patients with physical disabilities, have help with regular foot care and refer for 7. Consider the Foot Forward for Disbetes [5] program for patient education and information on foot care. B. For all patients, optimise management of co-morbidities and risk factors: . Type 1 dispetes and type 2 dispetes: Advise patients to register with National Diabetes Service Scheme (NDSS) [2]. Arrange appropriate care plans and health assessments. Note that Aboriginal and Tones Strait Islander people are eligible for up to 10 extra alled health sessions following a health assessment and are eligible for up to 10 alled health

HealthPathways - Adult Podiatry and Foot Clinic Referral

Relevant and Related Pathways

Relevant and Related Pathways

Managing Type 2 Diabetes

Medications for Type 2 Diabetes (Excluding Insulin)

Diabetes-related Foot Disease and Screening

Glycaemic Control

Hypoglycaemia

Insulin

Newly Diagnosed or Suspected Type 1 Diabetes in Adults

Self-monitoring Blood Glucose (SMBG)

Screening and Detection of Diabetes and Pre-diabetes

Health Assessments

Diabetes-related Foot Disease and Screening

Referral Pathways

Acute Diabetes Referral (Same-day)

Non-acute Diabetes Referral (> 24 hours)

Diabetes Education Referrals

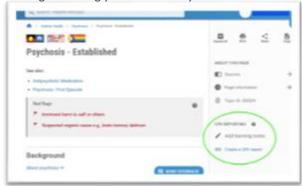
Acute Endocrinology Referral (Same-day)

Non-acute Endocrinology Referral (> 24 hours)

Adult Dietetic Referral

Exercise Physiology Referral

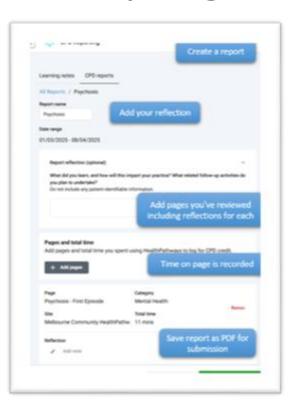
CPD Hours for HealthPathways Use


CPD Hours for HealthPathways Use and the CPD Reporting Tool

HealthPathways Melbourne has <u>CPD hours for</u>
<u>HealthPathways Use</u> to support clinicians in meeting their <u>CPD requirements</u> through everyday use of the platform

Step 1: Access Pathway page

- Navigate to a clinical pathway (e.g., Psychosis Established).
- Click "Add learning notes" or "Create a CPD report" to begin tracking your CPD activity.



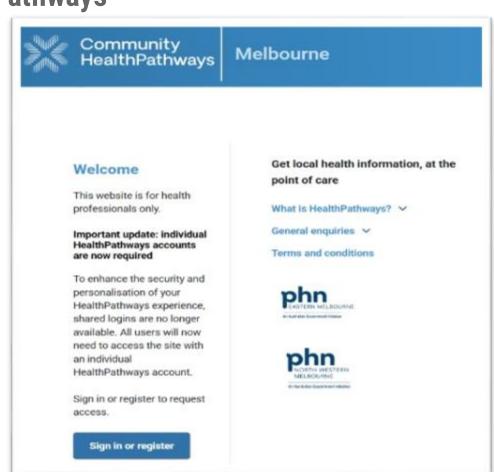
Step 2: Add Learning Notes

For further information on the CPD reporting tool, please see these videos:

- How to create a CPD report
- How to add learning notes

Step 3: Generate Your CPD Report

- Go to the CPD Reporting section.
- Add reflections, review pages, and confirm time spent.
- Export your report as a PDF for submission.


Accessing HealthPathways

Please click on the **Sign in or register** button to create your individual account or scan the QR code below.

If you have any questions, please email the team info@healthpathwaysmelbourne.org.au

Stay updated with HealthPathways Melbourne Monthly bulletin Click "Subscribe to Updates" on HealthPathways homepage or email info@healthpathwaysmelbourne.org.au

Tonight's speakers from Western Health

· Dr. Debbie Gordon, Endocrinologist

Senior consultant in Rapid Access Diabetes Clinic, Young Adult Diabetes Clinic, Diamond high risk Endocrine/ Diabetes clinic

· Dr. I-Lynn Lee, Endocrinologist

Clinical Lead Obstetric Endocrinology

· Dr. Fiona Bodey, Endocrinologist

Clinical Lead Diabetic Foot Service, Director of Medical Student

Education for the school of Translational Medicine at Monash University

· Dr. Huy Do, Endocrinology Registrar

Research Fellow and Endocrine Registrar

Case 1 Hba1c ≠ fasting BSL

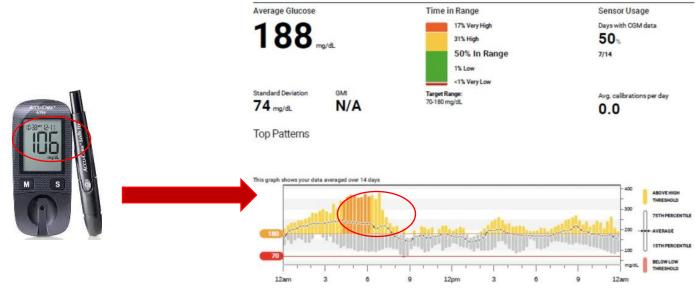
- A 50-year-old man, known with Type 2 Diabetes, diagnosed 4 years ago, presents for follow up.
- He is noted to be very overweight, with a BMI of 40 kg/m2
- He has microalbuminuria, for the second time with an Hbalc of 9%.
- He is adamant he can only finger-prick BSL once a day, and when he does his BSL is 5-6mmol/L!!
- His lipogram showed a total cholesterol of 4.8mmol/L, LDL cholesterol of 2.2mmol/L, triglycerides of 1.8mmol/L and an HDL of 0.7mmol/L

His fasting glucose does not correlate with the his HBA1C - which should be trusted?

- Fingerprick BSL measures glucose at a single point in time
- HBA1C is an average of glycated Hb in a 3 month period

Error in Hbalc may be due to slower / faster turnover of RBC or changes in glycosylation

- -falsely high--low rbc turnover states: asplenia, anaemia, lead poisoning
- -falsely low--high rbc turnover: splenomegaly, haemolysis, blood loss, sickle cell, ESRF pregnancy
 - -inhibition of glycosylation : high dose vitamin C and E
 - -hbalc assay interference: uraemia, severe hyperTg, severe hyper BR, chronic salicylate, alcohol or opioid ingestion


Radin, Jnl Gen Int Med. 2014

CGM "fills the gaps in knowledge"

Continuous Glucose Monitoring (CGM) gives **ongoing continuous feedback** about the **trend of interstitial glucose**

- Hbalc reductions
- Less hypoglycaemia
- Educational tool with real time decision making of the effects of food and exercise

Kwon. Endocrinol Metab. 2025

limitations to CGM

- Costly, if not on the PBS
- Sometimes trends in glucose are more important than a single values
- "Pretty reliable" (interstitial fluid), but not as reliable as a fingerprick (capillary blood)
- Social stigma
- Skin rash, infection
- Can create/ exacerbate anxiety- data overload, alarm fatigue, sleep disruption

Is there anyone who shouldn't use cgm?

- Consider- cell phone compatibility and availability
- Anxiety
- Patient who is on 1 oral hypoglycaemic agent

Accuracy of cgm

Physiological factors:

lag time (2-5 mins), hydration, sweat, body temperature

Sensor factors:

sensor placement, calibration, sensor age, sensor insertion site tissue

Environmental factors:

compression, altitude, electromagnetic interference

Medications:

hydroxyurea, salicylates, paracetamol, vitamin C

Types of cgm in Australia

Mard	8.2-9.1	9.2-9.7	10.1-11.2
Warm up	30 mins	60 mins	2 hours
duration	10 days	14-15 days	7 days
Sites of wear	Arms, abdomen, buttock, thigh	arms	Arms, abdomen, buttock, thigh
Insulin pen integration		Novopen 6 (novorapid, Ryzodeg)	Inpen (Humalog, Fiasp, novorapid)

NDSS funding of CGM in Australia

Conditions very similar to type 1 diabetes, eligible to access the CGM Initiative through the NDSS

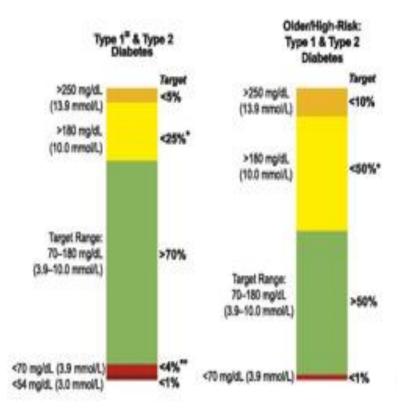
Children and young people under 21 years with conditions very similar to type 1 diabetes who require insulin.

	Category	Condition
	Genetic defect of beta cell function	Chromosome 20, HNF- 4alpha (MODY 1)
		Chromosome 12, HNF- 1alpha (MODY 3)
		Chromosome 13, IPF-1 (MODY 4)
		Chromosome 17, HNF- 1 beta (MODY 5)
		Chromosome 2, NeuroD1 (MODY 6)
		Chromosome 2, KLF11 (MODY 7)
		Chromosome 9, CEL (MODY 8)
		Chromosome 7, PAX4 (MODY 9)
		Chromosome 11, INS (MODY 10)
		Chromosome 8, BLK (MODY 11)
		Chromosome 11, ABCC8
		Chromosome 11, KCNJ11
		Mitochondrial DNA
		Permanent neonatal diabetes
		Transient neonatal diabetes
	Genetic defect in insulin action	Type A insulin resistance
IIIou		Leprechaunism
		Rabson-Mendenhall syndrome
		Lipoatrophic diabetes

Any person with TYPE 1 DIABETES

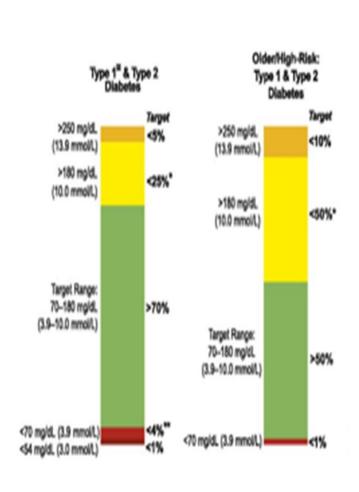
Any person <21 yrs with a chronic condition listed

Application can only be made by an Endocrinologist,
physician, paediatrician


Category		Condition	
C.	Diseases of the	Pancreatectomy	
•.	exocrine pancreas	Neoplasia	
	•	Cystic fibrosis	
		Insulinoma	
D.	Endocrinopathies	Glucagonoma	
E.	Drug or chemical induced	Vacor	
	Drug or oriented madeca	Pentamidine	
		Glucocorticoids	
		Diazoxide	
		Alpha-interferon NODAT or Post renal transplant	
		Post liver transplant	
		Calcineurin inhibitors	
		Fluoroquinolones	
		Highly active antiretroviral therapy (HAART)	
-	Infections	Congenital rubella	
F.	intections	Cytomegalovirus	
		Coxsackie	
G	Uncommon forms of	"Stiff-man" syndrome	
<u> </u>	immune-mediated diabetes	Anti-insulin receptor antibodies	
н.	Other genetic syndromes	Down syndrome	
	sometimes associated	Turner syndrome	
	with diabetes	Wolfram syndrome	
		Friedreich's ataxia	
		Huntington chorea	
		Laurence-Moon-Bardet-Biedl syndrome	
		Myotonic dystrophy	
		Porphyria	
		Prader-Willi syndrome	
		Glycogen storage disease	
		Glycogen storage disease	

Goals of diabetes care

- 1. hbalc <7%, but individualized for the person
- 2. no hypoglycaemia
- 3. avoid glucose swings up and down
- 4. quality of life
- 5. CGM GOALS:


TIR > 70%, <4% HYPOS, variability < 32%

But what does this mean?

TIR of 70% means that bsl 3.9-10mmol/L 2/3 of the day (16 hrs/day)

TIR of 50% means that bsl 3.9-10mmol/L $\frac{1}{2}$ of the day (12 hrs/day)

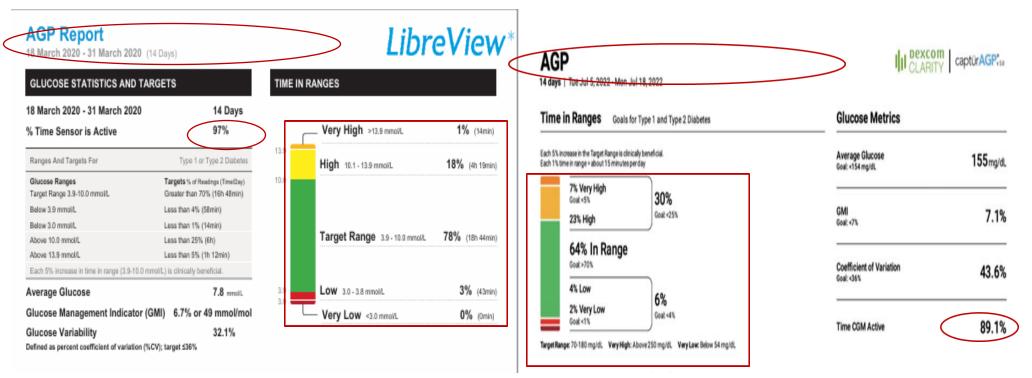
We know that for every 0.5% above hbalc 6.5% there is risk if microvascular complications (DCCT trial)

Every 10% ↓ in TIR -↑ 64% HR retinopathy, 40% HR microalbuminuria

In pregnancy ↑TIR by 7%↓ risk foetal macrosomia, hypoglycaemia, neonatal hospitalizations

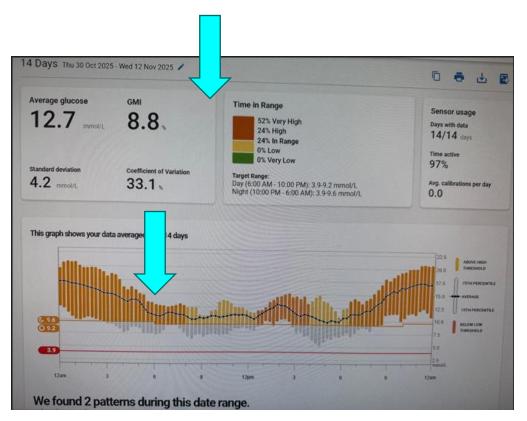
TIR 70% = HbA1C 7%

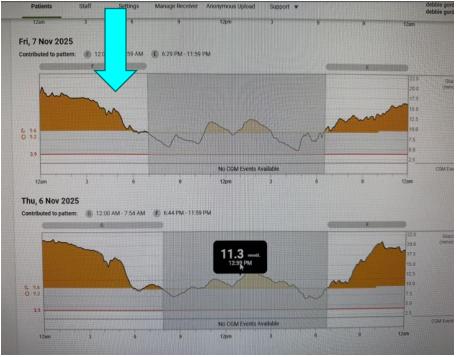
TIR 50% = HbA1C 8%


Change TIR 10% = HbA1c change 0.5%

ADA Standards in Care. Diabetes Care. 2017 Beck. J diabetes Sci Technol. 2019 Vigersky. J Diabetes Technol Ther. 2019

Interpretation of cgm




Patient name, date of review, time that sensor is active, Set the review period to 2 weeks
Start with TIR >80%, hypo's <3%,
GMI
Variability (< 32%)

Looking at the patient's CGM

Beyond CGM- seeing the person—a look at lipids and BP

Beyond the scope of today

```
but:
```

```
LDL-cholesterol < 1.8 mmol/L 1' prevention, < 1.4 mmol/L for 2' prevention
```

trig < 1.7mmol/L (on a fasting specimen)

BP < 130/80 mmHg

Case 1

A 50 year-old man, with known Type 2 diabetes, diagnosed 4 years ago, presents for follow up.

He is currently taking Metformin XR 500mg daily.

He is noted to be very overweight, with a BMI of 40 kg/m²

He has microalbuminuria, for the second time with ACR of 24 and and a GFR level of 36mmol/min with an HbA1c of 9%.

His lipogram showed a total cholesterol of 4.8mmol/L, LDL cholesterol of 2.2mmol/L, triglycerides of 1.8mmol/L and an HDL of 0.7mmol/L He is adamant he can only perform finger-prick BGL once a day

Dr Fiona Bodey

Western Health Endocrine Dept

Dr Debbie Gordon, Dr I-Lynn Lee, Dr Fiona Bodey, Dr Huy Do

Which Agent to Use and Why?

- Metformin
- SGLT2 Inhibitor
- GLP-1 analogue or DPP-4 Inhibitor
- Sulphonylurea
- Pioglitazone
- Insulin

Which Agent to Use and Why?

- Metformin
- SGLT2 Inhibitor
- GLP-1 analogue or DPP-4 Inhibitor
- Sulphonylurea
- Pioglitazone
- Insulin

SGLT2 Inhibitor therapy

- Sodium glucose co-transporter 2 inhibitors
- Limit renal glucose absorption, promoting urinary excretion of glucose
- Weight neutral
- No hypoglycaemia (on their own)
- Mild diuretic effect
- Well tolerated

SGLT2 Inhibitors

• Reduction in Cardiovascular morbidity and mortality

 Also beneficial for patients with HFpEF and HFrEF without diabetes mellitus

> Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes, Zinman et al, NEJM 2015 Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes, Wiviott et al, NEJM 2019 Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction, McMurray et al, NEJM 2019 Empagliflozin in Heart Failure with a Preserved Ejection Fraction, Anker et al, NEJM 2021

SGLT2 Inhibitors

• Preservation of renal function and reduction in proteinuria

Effect also demonstrated in patients without diabetes mellitus

- Reduced intraglomerular pressure due to increased afferent arteriole resistance
- Reduced hyperfiltration

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy, Perkovic et al, NEJM 2019 Empagliflozin in Patients with Chronic Kidney Disease, NEJM 2023 Dapagliflozin in Patients with Chronic Kidney Disease, Heerspink et al, NEJM 2020

SGLT2 Inhibitors Adverse Effects

Urinary Tract Infections

Thrush

Genital infections

Amputation risk?

Atypical fracture risk?

Diabetic Ketoacidosis

- Euglycaemic (ie BGLs not especially elevated)
- Increased risk especially in the setting of fasting or reduced oral intake and illness
- Mechanism thought to relate to elevated glucagon/insulin ratio favoring lipolysis, insulin reduction due to renal excretion of glucose, further reduction in insulin in the setting of reduced intake
- SGLT2 inhibitors also thought to reduce renal ketone excretion

SGLT2 inhibitor J insulin* (β-cell) glucosuria* Na⁺ reabsorption ↑ glucagon (α-cell) volume depletion (I BP, weight loss) intercurrent illness/ ↑ counterregulatory hormones metabolic stress (catecholamines, corticosterone, glucagon) (Surgery, infection, *insulinopenia → ↑ lipolysis ↑ free fatty acid delivery to liver ↑ ketosis euglycemia **eDKA**

SGLT2 Inhibitors Increase the Risk of Diabetic Ketoacidosis Developing in the Community and During Hospital Admission, Hamblin et al, JCEM 2019
SGLT2 Inhibitor–Induced Euglycemic Diabetic Ketoacidosis: A Case Report, Wang et al, Kidney Med 2020

Incretins

- Gut peptides that are secreted after nutrient intake
- GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1) are the known incretin hormones

- Enhance appropriate Beta cell secretion (insulin and amylin)
- Suppression of glucagon secretion from pancreatic alpha cells
- Reduce hepatic glucose production
- Increase satiety through CNS mediated effects
- Slow gastric emptying time
- Promote weight loss

Incretin hormones: Their role in health and disease. Nauck et al, Diabetes Obes Metab, 2018
A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. Cornell, J Clin Pharm Ther. 2020

Incretin Based Therapies

GLP-1 analogues

- Weight Loss
- Injectable
- GI side effects, pancreatitis
- Dulaglutide, Semaglutide
- Tirzepatide (Dual GLP-1 and GIP agonist)
 - Dual glucose dependent insulinotrophic polypeptide and GLP-1 agonist
 - Thought to potentiate the effect of GLP-1 on appetite

DPP-IV inhibitors

- Weight neutral, no hypoglycaemia
- Oral tablet
- Nausea, constipation
- Linagliptin, sitagliptin, saxagliptin, alogliptin

GLP1 analogues

- Effective reduction in BGLs and HbAlc
- Weight loss (even in patients without T2DM)
- Adverse effects include nausea/vomiting, constipation, pancreatitis
- Hypoglycaemia is minimal (but possible)

Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials, Sattar et al, The Lancet, October 2021

GLP1 analogues

- Cardiovascular benefits
 - Reduction in cardiovascular mortality
 - Improved symptoms of heart failure

- Cardiovascular outcomes may be imparted by reduction in atherosclerosis due to improving inflammatory markers and antioxidative effects
- This may also result in reduced mesangial expansion and improved glomerular hyperfiltration and endothelial function

Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes V. Perkovic and Others N Engl J Med 2024; 391:109-121
Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity M. Packer and Others N Engl J Med 2025; 392:427-437
Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes M. N. Kosiborod and Others N Engl J Med 2024; 390:1394-1407

GLP1 analogues

- Renal benefits
 - Preservation of eGFR
 - Reduction in albuminuria
 - FLOW trial Semaglutide reduced the risk of the primary composite outcome (kidney failure, sustained 50% decrease in eGFR, or kidney-related/cardiovascular death) by 24% compared to placebo
- Likely due to reduction in oxidative stress and fibrosis
- Effect unrelated to change in body weight
- Intrinsic kidney and immune cells contain the GLP-1 receptor, and GLP-1 receptor agonists reduce cellular expression of proinflammatory and profibrotic mediators

Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes V. Perkovic and Others N Engl J Med 2024; 391:109-121
Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity M. Packer and Others N Engl J Med 2025; 392:427-437
Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes M. N. Kosiborod and Others N Engl J Med 2024; 390:1394-1407

Case 2

A 50 year-old man, with known Type 2 diabetes, diagnosed 4 years ago, presents for follow up.

He is currently taking Metformin XR 500mg daily.

He is noted to be very overweight, with a BMI of 40 kg/m²

He has microalbuminuria, for the second time with ACR of 24 and an eGFR level of 36mmol/min with an HbA1c of 9%.

His lipogram showed a total cholesterol of 4.8mmol/L, LDL cholesterol of 2.2mmol/L, triglycerides of 1.8mmol/L and an HDL of 0.7mmol/L

He is adamant he can only perform fingerprick BGL once a day

GLP-1 analogue or SGLT2 Inhibitor?

Current Financial Situation

Non-Diabetes PBS indications for SGLT2 inhibitors

- Empagliflozin
 - Chronic heart failure (HFrEF and HFpEF) with NYHA Class II to IV symptoms
 - Additional TTE requirements for HFpEF ie LVEF >40%
 - CKD with eGFR 20-45 or eGFR 20-90 and ACR of at least 22.6 mg/mmol/L
- Dapagliflozin
 - Chronic heart failure with LVEF <40% (HFrEF) and NYHA Class II to IV symptoms
 - Additional TTE requirements for HFpEF
 - CKD with eGFR 25-75 and ACR 22.6-565 mg/mmol inclusive

Which Agent to Use and Why?

- Metformin
- SGLT2 Inhibitor
- GLP-1 analogue or DPP-4 Inhibitor
- Sulphonylurea
- Pioglitazone
- Insulin

Case 2 Miss TN the young person

• 28 yr old, married lady, from Vietnam, PoGo, recently immigrated to Australia and found to have high fasting BSL 8 mmol/L, during her medical for her visa application

• She would like to fall pregnant soon, but her BMI is 28kg/m2 and she wanted to loose weight first.

• She has no family history of diabetes or any other medical problems and is not on any medication

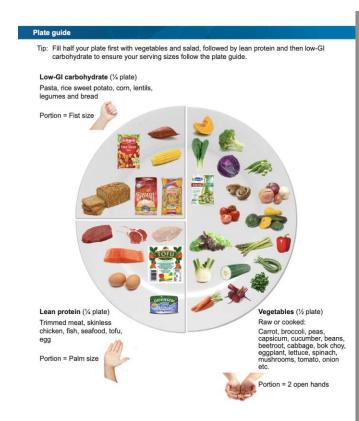
Question 1: initial management should be?

- 1. diet modification and exercise, including about 150 mins a week of mixed cardiac and resistance training?
- 2. diet and exercise with Hbalc measurement
- 3. diet and exercise with Hbalc measurement and metformin initiation
- 4. diet and exercise, Hbalc and testing for type 1 diabetes

Dr I-Lynn Lee

Western Health Endocrine Dept

Dr Debbie Gordon, Dr I-Lynn Lee, Dr Fiona Bodey, Dr Huy Do


Goal: remission of diabetes

Modification of diet and physical activity to achieve good life habits and foundation of diabetes

Broad dietary principles: plate model, whole foods, reduce sugary beverages

Physical activity: increase incidental activity

Trial of 3 months of modifications to aim for target HbAlc

1st line pharmacotherapy UKPDS 34 - Substudy with Metformin

Study design: Randomised controlled trial

Population: 1704 overweight adults with newly diagnosed T2DM

Intervention:

> Metformin group vs. conventional therapy (diet alone)

> Also compared with intensive therapy using sulfonylurea or insulin

Follow up: 10 years

UKPDS Group Lancet Sept 1998

UK Prospective Diabetes Study

Outcome	Metformin vs. Diet	Metformin vs. SU/insulin
All-cause mortality	↓ 36%	↓ 39%
Diabetes related mortality	↓ 42%	↓ 42%
Myocardial infarction	↓ 39%	↓ 36%
Any diabetes related endpoint	↓32 %	↓21%
All cause mortality	7.5 vs. 12.7 deaths per 100 patient years (RR 36%)	7.5 vs 12.3 deaths per 100 patient years (RR 39%)
Weight gain & hypoglycaemia	Less than SU/insulin	

GLP1-RA use pre-conception

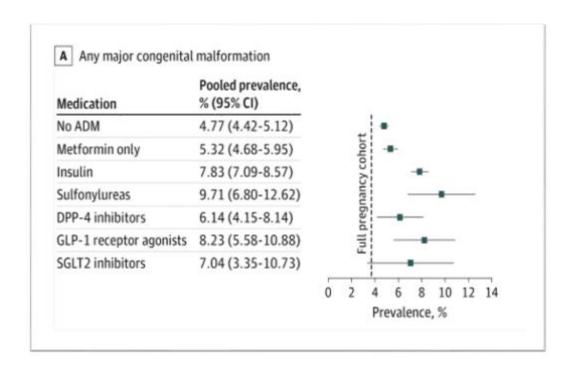
Risk of congenital malformation in general population is 2-3%

With diabetes this is increased to 5-10%.

Risk is directly linked to degree of hyperglycemia at time of conception

Distinguish risk of malformations from hyperglycemia and GLP-1RAs

Price et al. Archives of Gynecology and Obstetrics (2025) 311



Human studies of GLP-1-RA

Multinational population based cohort study n=50,000 pregnant women with T2DM

No greater risk of malformations after periconceptional use of sulfonylureas, DPP-4 inhibitors, GLP1-RA or SGLT-2i compared to insulin use.

Cesta et al. JAMA Intern Med 2023 Dec 11;184(2)

Areas of uncertainty

• ? Metabolic benefits of GLP-1RAs used prior to pregnancy are sustained or if improve pregnancy outcomes.

- ? Ideal time to cease these drugs , 5 half lives before conception (ie. Semaglutide half life 5-7 days, so drug ceased ~6 weeks before conception).
- Women who have bariatric surgery: data suggest significant weight loss may benefit mother but be detrimental for the offsprings.

Recommendations

There are no studies examining peri-conceptional use of GLP-1RAs with data on maternal glycemic control

The data on teratogenicity is neither proven or disproven.

More studies are needed to investigate any impact on first trimester loss, congenital malformations, fetal growth, maternal glycemic control, preterm birth, placental and breast milk passage is required.

Recommendation that patients use contraception while taking GLP-1RAs to prevent unintended pregnancy.

SGLT2 Inhibitor safety in young women

Animal data				
Drug	Developmental toxicity	Dilatation of renal pelvis and tubules	Reversibility of renal changes	
Canagliflozin	Ossification delays of metatarsal bones	+ A/B	No fully reversible	
Empagliflozin	-	+ A/B	Reversible	
Dapagliflozin	-	+ A/B	No fully reversible	

A= EMA product information B= FDA product information

Muller et al. Frontiers in Endocrinology Oct 2023

preparation for pregnancy

Cease all potentially teratogenic medications (ACE inhibitors), statins)

Start folic acid 5mg 3 months prior to conception

Microvascular complications screen

Target HbA1c< 6.5% prior to conception

Metformin and it safety needs to be discussed.

Initiate basal insulin to target fasting blood glucose < 6.0 mmol/L

Bolus insulin to target 2-hr post prandial BGL < 7.5mmol/L

Rudland et al. ANZJOG 2020

Case 2 continued

Her mother calls her from overseas and expresses a concern that there is no family history of Type 2 Diabetes, and remembered that her brother, her mother and her maternal grandfather all had a mild form of Diabetes that did not need treatment despite her being of South East Asian ethnicity, could there be another diagnosis?

Question 2: How should she be tested now?

- 1. OGTT
- 2. fasting glucose and c-peptide
- 3. anti-GAD, anti-IA2 and anti-Zn transporter antibodies?
- 4. all of the above
- 5. none of the above

Dr Huy Do

Western Health Endocrine Dept

Dr Debbie Gordon, Dr I-Lynn Lee, Dr Fiona Bodey, Dr Huy Do

When to suspect Type 1 Diabetes

- When the presentation appears somewhat atypical...
- Age
- Phenotype
- Catabolic state
- Family Hx, including autoimmune disease
- Time course
 - Rapidly escalating hyperglycaemia

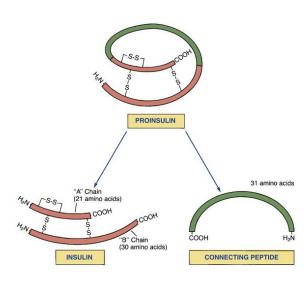
Table 1 Clinical features at presentation that help to distinguish type 1 and type 2 diabetes			
	Type 1 diabetes	Type 2 diabetes	
Weight loss	Yes (though not always, eg, in slow onset type 1) ¹	Unusual ¹	
Ketonuria	Yes (though not always in slow onset type 1) ¹	No, unless patient has been fasting recently	
Time course for symptoms	Weeks or days ¹	Months to years	
Severity of symptoms (eg. nocturia >3x)	Often marked ¹	Variable, but usually not severe 1	
Family history	Possible family history of autoimmune disease ² and/or insulin dependence at a young age ³	Family history present in 30% with onset in adult life ⁴	
Age	Peak age in pre-school and teenage years, but can present at any age 56	Typically after the age of 40, but can present in younger patients 5 6	

Type 1 Diabetes - 'the' Antibodies

- Anti-GAD (Glutamic acid Decarboxylase)
- Anti-IA2 (Islet antigen 2)
- ZnT8 (Zinc transporter 8) antibodies

 Anti-insulin not routinely tested (positive once exposed to exogenous insulin)

Table 1: Key autoantibodies in type 1 diabetes		
Autoantibody	Occurrence at diagnosis	
Anti-GAD (glutamic acid decarboxylase)	70%	
Anti-IA2 (a protein tyrosine phosphatase)	60%	
Anti-Islet cell	Up to 80%	
Anti-Zinc transporter 8 protein	Up to 80%	



C-Peptide and Glucose: Why the need?

Assessment of beta cell function

At diagnosis

- If antibodies negative
- If concerned for pancreatic insufficiency
 - E.g. T3cDM
- Paired C-peptide & Glucose
 - o Fasting
 - o Hyperglycaemia
 - Low or low-normal + hyperglycaemia

Utility of OGTT

- OGTT: Gold standard to diagnosing diabetes or GDM
- Useful in indeterminant/borderline cases
- If HbA1c unreliable (e.g. anaemia)
- Could suggest certain MODY types e.g. GCK

References

Non-pregnant:

Normal: Fasting ≤6.1 mmol/L; 2h <7.8 mmol/L

Impaired glucose tolerance: Fasting <7.0 mmol/L; 2h 7.8 - 11.0 mmol/L

Impaired fasting glycaemia: Fasting 6.1 - 6.9 mmol/L; 2h <7.8 mmol/L

Diabetes mellitus: Fasting ≥7.0 mmol/L; 2h ≥11.1 mmol/L

Pregnant:

Normal: Fasting ≤5.0 mmol/L; 1h <10.0 mmol/L 2h glucose <8.5 mmol/L

Gestational diabetes mellitus: Fasting 5.3-6.9 mmol/L OR 1h ≥10.6 mmol/L OR 2h 9.0-11.0 mmol/L

Overt diabetes in pregnancy: Fasting ≥7.0 mmol/L OR 2h ≥11.1 mmol/L

MODY

- Mature onset Diabetes of the Young
- Collection of inherited, non-autoimmune monogenic diabetes
- Prevalence 1/10,000 in adults, 1/23,000 in children
 - <5% of diabetes

- May not fit T1 or T2DM mould
- Classically onset of hyperglycaemia before 25yo (but can be diagnosed later)
- Strong family hx (most autosomal dominant)
- Some may only develop mild hyperglycaemia (GCK), others require treatment (HNF1a)

Mody Calculator

Age at diagnosis

MODY Probability Calculator

EXETER DIABETES

(years)	
Sex	○ Male ○ Female
Currently treated with insulin or tablets	○ Yes ○ No
Time to insulin treatment (if currently treated with insulin)	 Not currently treated with insulin Within 6 months of diagnosis Over 6 months after diagnosis
BMI (kg/m²)	
HbA1c (%) or	
HbA1c mmol/mol	
Current Age (years)	
Parent affected with diabetes	○ Yes ○ No
Ethnicity	○ White ○ Non-white
Other	 □ Renal cysts □ Deafness □ Partial lipodystrophy □ Severe Insulin Resistance in absence of obesity □ Severe obesity with other syndromic features

www.diabetesgenes.org/ex eter-diabetesapp/ModyCalculator App

MODY

Table 1 The causative genes for maturity-onset diabetes of the young (MODY) and medical conditions associated with each MODY subtype

MODY gene	Frequency (% in MODYs)	Pathophysiology	Other features	Possible treatment
HNF4α	5	β-Cell dysfunction	Neonatal diabetes, hyperinsulinemic hypoglycemia during infancy, low triglycerides	Sensitive to sulfonylurea
GCK	15–20	Glucose sensing defect	Stable mild fasting glucose	No medication, or Diet
HNF1α	30–50	β-Cell dysfunction	Glucosuria	Sensitive to sulfonylurea
PDXI	<	β-Cell dysfunction	Homozygote: permanent neonatal diabetes, pancreas agenesis	Diet or OAD or insulin
HNFIβ	5	β-Cell dysfunction	Renal malformations, genito-urinary tract anomalies, pancreatic hypoplasia, low birth weight	Insulin
NEUROD I	<	β-Cell dysfunction	Neonatal diabetes, child or adult-onset diabetes neurological abnormalities.	OAD or insulin
KLFII	<	β-Cell dysfunction	Similar to type 2 diabetes	OAD or insulin
CEL	<	Pancreas endocrine and exocrine dysfunction	Exocrine dysfunction, lipomatosis	OAD or insulin
PAX4	<	β-Cell dysfunction	Ketoacidosis-prone	Diet or OAD or insulin
INS	<	Insulin gene mutation	Neonatal diabetes, child or adult-onset diabetes	OAD or insulin
BLK	<	Insulin secretion defect	Overweight, relative insulin secretion failure	Diet or OAD or insulin
ABCC8	<	ATP-sensitive potassium	Homozygote: permanent neonatal diabetes,	OAD (sulfonylurea)
		channel dysfunction	Heterozygote: transient neonatal diabetes	
KCNJI I	<	ATP-sensitive potassium channel dysfunction	Homozygote: neonatal diabetes	OAD or insulin
APPLI	<	Insulin secretion defect	Child or adult-onset diabetes	Diet or OAD or insulin

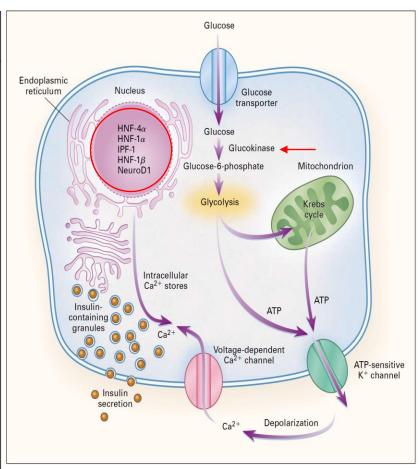


Figure 1. Model of a Pancreatic Beta Cell and the Proteins Implicated in Maturity-Onset Diabetes of the Young (MODY).

Summary

- T2DM remains the most common type of diabetes
 - But consider alternative diagnoses in presence of atypical features
 - Important to reclassify access to resources e.g. CGM
- History and Exam remains key

 Biochemical tests (e.g. Islet Cell autoantibodies) and calculators (MODY probability) available to guide diagnosis

• If in doubt, contact/refer to an Endocrinologist

Conclusion

- CGM has an important role to play and should be used to gather more glycaemic information, which can assist in management decisions, but the cost limits its routine use in clinical practice
- Deciding when to use a GLP-1RA, a SGLT2-I or both together should be considered carefully in patients with multiple complications of Diabetes
- Preparing for a possible pregnancy in a patient with Diabetes is difficult and there are many considerations and little conclusive evidence
- When a patient does not quite fit "the typical Type 2 diabetes mould", think of MODY

When in doubt,

give a shout.....your friendly endocrinologist is always ready to help

Thank you for attending!!

Session Conclusion

We value your feedback, let us know your thoughts.

Scan this QR code

You will receive a post session email within a week which will include slides and resources discussed during this session.

Attendance certificate will be received within 4-6 weeks.

RACGP CPD hours will be uploaded within 30 days.

To attend further education sessions, visit,
https://nwmphn.org.au/resources-events/events/

This session was recorded, and you will be able to view the recording at this link within the next week.

https://nwmphn.org.au/resources-events/resources/